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Abstract—Web applications can leak confidential user informa-
tion due to the presence of unintended side-channel vulnerabili-
ties in code. One particularly subtle class of side-channel vulner-
abilities arises due to resource usage imbalances along different
execution paths of a program. Such side-channel vulnerabilities
are especially severe if the resource usage imbalance is asymptotic.
This paper formalizes the notion of asymptotic resource side-
channels and presents a lightweight static analysis algorithm
for automatically detecting them. Based on these ideas, we have
developed a tool called SCANNER that detects resource-related
side-channel vulnerabilities in PHP applications. SCANNER has
found 18 zero-day security vulnerabilities in 10 different web
applications and reports only 2 false positives. The vulnerabilities
uncovered by SCANNER can be exploited using cross-site search
attacks to extract various kinds of confidential information, such
as a user’s medications or purchase history.

I. INTRODUCTION

Web applications have become enormously popular due to
the ubiquity of the Internet and the existence of rich devel-
opment frameworks. Hence, in today’s Internet-rich world,
most people perform their daily activities, including banking
and e-commerce, using web applications. Unfortunately, this
growing popularity of privacy-sensitive applications has also
led to a surge of illegal activities by hackers trying to steal
confidential data.

To secure private data, web applications currently rely on
a combination of network-level security mechanisms, such as
encryption and firewalls, as well as application-level protection
techniques (e.g., credential checks and session handling).
While these mechanisms provide some degree of privacy
assurance, they do not prevent the application from leaking
confidential data through unintended communication channels,
known as side channels.

Many side-channel leaks in web applications are related to
resource usage (e.g., time or space). As an example, consider
a health-related web application whose response time varies
significantly, depending on whether the user is taking a certain
medication. In this case, the server response time can reveal
confidential information about the ailments of specific users.
For instance, recent work [21] has shown that timing and
response-size side-channel vulnerabilities can be exploited
using cross-site search attacks in which the attacker submits
a cross-site query with the user’s credentials and observes the
time it takes for the browser to respond to the query.

The large bulk of existing side-channel attacks (usually
against codes that carry out cryptographical computation)

exploit minor imbalances in resource usage [29], [22], [37].
Such attacks rely on the assumption that the attacker is able
to precisely measure the time it takes to execute simple native
operations like integer comparison on the target machine.
However, despite recent advances in statistical measurement
techniques [34], minor differences in resource usage are dif-
ficult to observe in web-oriented settings. On the other hand,
if the attacker is given the ability to amplify the imbalance in
resource usage, then the vulnerability becomes much easier to
exploit. For example, consider an application whose response
size is constant if the answer to a security-sensitive query
is negative but linear in the size of the input otherwise. In
this case, an attacker can observe a substantial difference in
response size by supplying a sufficiently large input to the
application. We refer to such vulnerabilities that exhibit an
asymptotic difference in resource usage as asymptotic resource
side-channel vulnerabilities.

In this paper, we introduce and formalize asymptotic re-
source side-channels, a class of vulnerabilities that can be ex-
ploited in settings where the attacker cannot precisely measure
resource usage (e.g., web applications). To help developers
safeguard their applications against such vulnerabilities, we
also present a novel static analysis for automatically detecting
asymptotic side channels. Our analysis employs a lightweight
program abstraction that combines taint information with a
coarse summary of resource usage. In particular, our analysis
differentiates between variables that are untainted, secret-
tainted, and user-tainted, and summarizes the resource usage
of each code fragment as zero, constant, or unbounded. The
key idea underlying our analysis is to identify branch condi-
tions that are secret tainted and where the resource usage is
unbounded along one branch but not the other. As we show
experimentally, our proposed program abstraction is effective
at detecting asymptotic side-channel vulnerabilities with a low
false positive rate and can uncover exploitable vulnerabilities
in real-world web applications.

We have implemented our proposed static analysis in a tool
called SCANNER 1 for analyzing PHP applications. While the
techniques we describe in this paper can be used to detect
any resource-related asymptotic side-channel vulnerability, our
implementation focuses on two kinds of resources, namely,
time and response size. In addition to pinpointing vulnerable
components, SCANNER further aids security analysts by iden-

1SCANNER stands for Side Channel ANalyzER



tifying confidential database fields that may be leaked due to
the detected vulnerability. Furthermore, SCANNER helps users
assess the severity of the uncovered vulnerability by semi-
automatically generating a Javascript exploit that performs a
cross-site search attack.

We evaluate SCANNER on 10 open-source PHP applications
and show that it uncovers 18 side-channel vulnerabilities and
reports only 2 false positives. Furthermore, we are able to
exploit these vulnerabilities using cross-site search attacks and
show that the attacker can extract various kinds of confidential
data, such as a user’s purchase history, medical records, and
bids placed by the user. We have reported the vulnerabilities
to the developers and many of them have been fixed by the
developers at the time of this submission.

II. FORMALIZATION OF ASYMPTOTIC RESOURCE
SIDE-CHANNELS

In this section, we formally define the class of side-channel
vulnerabilities studied in this paper and justify our decision to
focus on this subclass.

Definition 1: (Resource Side-Channel Vulnerabilities) Let
h, l denote high and low inputs of a program, respectively,
and let RP (i) denote the resource usage of program P on
input i. We say that program P has a resource side-channel
vulnerability if:

∃h1, h2, l. RP (h1, l) 6= RP (h2, l)

The above definition above is effectively an instantiation of
the well-known non-interference policy [39] with respect to
resource usage2 As in traditional non-interference terminology,
high variables represent secret values, while low variables
denote values that are not security-sensitive. Hence, according
to the above definition, a resource side-channel vulnerability
arises if it is possible to observe different resource usages
when program P is run on the same low input but different
high inputs. Hence, an adversary can glean information about
the secret simply by observing the program’s resource usage.

Since Definition 1 does not specify the kind of resource,
it is quite general and can be instantiated in a variety of
ways to yield different classes of side-channel vulnerabilities
previously discussed in the literature. For instance, if the
resource of interest is CPU cycles, then this vulnerability
corresponds to a timing side channel. On the other hand, if we
instantiate RP with power consumption, then the vulnerability
could be exploited to cause a power monitoring attack.

However, since non-interference is a very strong condition
that is violated by almost any program, we believe that such an
approach is not practical. For instance, consider a program that
has a very minor resource imbalance (e.g., a few CPU cycles)
across two different execution paths. While such a program has
a resource side-channel vulnerability according to Definition 1,

2While the term “non-interference” was originally coined by Goguen and
Meseguer [23], our definition follows the one adopted by the language-based
security community [39], [8], [41].

it is very unlikely to be exploitable because an attacker cannot
reliably observe this minor imbalance in resource usage. 3

Motivated by the observation that standard non-interference
is too strong of a policy to reason about exploitable resource
side channels, we instead focus our attention on asymptotic
resource side channels, which can be reliably exploited by
attackers:

Definition 2: (Asymptotic Resource Side-Channel Vulner-
abilities) Let h denote the high inputs of a program, and let
RP (I) denote the resource usage of program P on input I . We
say that program P has an asymptotic resource side-channel
vulnerability if:

∃h1, h2. RP (h1) 6= Θ(RP (h2))
In this definition, observe that the low inputs are uncon-

strained, so RP (h1) and RP (h2) are both functions of low
inputs l. Thus, this definition states that it is possible to find
a pair of secrets h1 and h2 for which the resource usage of P
will be asymptotically different with respect to the low-inputs.
Since the attacker can control the program’s low inputs, he
can easily tell whether the secret is h1 or h2 by running the
program on arbitrarily large values of the low input.

Observe that every asymptotic resource side-channel vul-
nerability also satisfies Definition 1, but not vice versa. We
illustrate the differences between Definitions 1 and 2 using
the following two examples.

Example 1: Consider the following code snippet:
foo(int n) {

if (secret) {
for(int i = 0; i < n; i++) consume(1);

} else consume(1);
}

Let consume(x) be a statement that consumes x units of
resource. If the value of secret is true, then the resource
usage of foo is n. On the other hand, if secret is false,
then the resource usage is 1. Since, n 6= Θ(1), this program
contains an asymptotic side-channel vulnerability according to
Definition 2.

Example 2: Consider the following code snippet:
bar(int n) {

if(secret) consume(2); else consume(1); }

Here, function bar contains a vulnerability according to
Definition 1 because the resource usage of the program differs
depending on whether secret is true or false. However, this
function does not exhibit an asymptotic vulnerability because
RP (H1) and RP (H2) only differ by a constant.

This second example illustrates why we choose to focus
on the subclass of vulnerabilities given by Definition 2 as
opposed to Definition 1: Because the difference in resource

3In fact, even if we restrict ourselves to resource-heavy operations, such
as database queries, Definition 1 still seems to be too strong in practice.
To justify this claim, we implemented an analysis that reports all instances
of Definition 1 for resource-heavy operations (specifically, database queries).
Even under this restrictive scenario, the analysis reported 285 warnings for the
10 PHP applications used in our evaluation. Our timing measurements for a
subset of these reports reveal that the overwhelming majority of the warnings
are not exploitable under realistic database states (because there is significant
overlap between timing measurements for positive and negative queries).
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usage is very small in Example 2, it is, in practice, quite
hard to exploit this imbalance due to various kinds of noise
in the program’s execution environment (e.g., network traffic).
Hence, our approach deliberately targets vulnerabilities that
can be amplified by the attacker through carefully crafted
inputs. In fact, previous work [21] has argued that one of the
tools for exploiting side channel vulnerabilities is to “amplify
the side channel by inflating communication or computation”.
This trick only works if the program contains an asymptotic
imbalance in resource usage rather than a constant difference.

Unfortunately, in practice it is still difficult to statically rea-
son about worst-case resource usage, and existing techniques
for reasoning about complexity typically do not scale to large
programs [25], [24], [26], [12]. Hence, to analyze realistic web
applications with a low false positive rate, we further restrict
our attention to the following subclass of asymptotic side-
channel vulnerabilities that can be detected using lightweight
static analysis:

Definition 3: (Constant-Superconstant Resource Side-
Channel Vulnerabilities) Let h, l denote the high and low
inputs of a program, and let RP (I) represent the resource
usage of program P on input I . Program P has a constant-
superconstant resource side-channel vulnerability if:

∃h1, h2. RP (h1) = O(1) ∧ RP (h2) 6= O(1)
In other words, we are interested in detecting a subclass

of asymptotic side-channel vulnerabilities where the resource
usage is constant for some values of the secret but a function of
L for other values of the secret. Note that, in this definition,
RP (h2) 6= O(1) implies that the resource usage is a non-
constant function of L when the high inputs are fixed to
h2. Our detection algorithm targets this specific subclass
of vulnerabilities because it is possible to find instances of
Definition 3 in a practical way without requiring heavy-weight
resource usage analysis.

III. STATIC DETECTION OF ASYMPTOTIC RESOURCE SIDE
CHANNEL VULNERABILITIES

We now turn our attention to the static analysis algorithm
for detecting asymptotic (i.e., constant-superconstant) vulnera-
bilities. We first explain the key ideas underlying our algorithm
and then provide a more formal description of the analysis.

A. Key Ideas

The key idea underlying our static analysis is to look for two
different paths π1, π2 in the program such that π1, π2 satisfy
the following conditions:

1) Paths π1, π2 differ on the value of the secret
2) Resource usage of π1 is a function of low input l
3) Resource usage of π2 is not dependent on l
To see how these conditions relate to Definition 3, observe

that condition (1) partitions the high inputs into two disjoint
classes H1, H2 such that h1 ∈ H1 satisfies the predicates on
path π1, while h2 ∈ H2 satisfies the predicates in path π2.
Furthermore, condition (2) states that ∀h2 ∈ H2. RP (h2) 6=
O(1), while condition (3) ensures ∀h1 ∈ H1. RP (h1) = O(1).

Expression E := c | v | E1 ? E2 (? ∈ {+,−, ...})

Condition C := E1 ◦ E2 (◦ ∈ {<,>,=})
| ¬C | C1 ∧ C2 | C1 ∨ C2

Statement S := consume(E) | source(v, label)
| v := E | S1;S2

| C ? S1 : S2 | while (C) do S

Fig. 1. Language used for describing our analysis

Our static analysis combines two kinds of taint information
(namely, secret taint and input taint) with a coarse summary
of resource usage for each program fragment. Input taint
information is used to summarize the resource usage of each
code snippet as zero, constant, or potentially infinite, where
the last value indicates that resource usage is controlled by
the attacker. In contrast, secret taint information is used to
determine if two program paths differ with respect to some
confidential data. Combining these two crucial pieces of infor-
mation, our analysis reports an error if it encounters a secret-
tainted condition such that the resource usage is potentially
infinite along one branch, but not in the other.

Example 3: Consider again the code from Example 1, which
contains an if statement whose branch condition is secret-
tainted. The resource usage in the else branch is constant
and does not depend on user input. On the other hand, the
resource usage in the then branch can be made arbitrarily
large because the loop bound n is input-tainted. Since the
resource usage inside the loop body is non-zero and the loop
bound is input-tainted, we summarize the resource usage of
the then branch as potentially infinite. The analysis reports
a potential vulnerability for this example because there is a
secret tainted branch-condition, where the resource usage is
potentially infinite along one branch, but not the other.

B. Formal Description of Static Analysis

We formally describe our algorithm on the simplified im-
perative programming language shown in Figure 1. In addition
to the standard assignment (v := E), sequencing (S1;S2),
conditional (C ? S1 : S2), and looping constructs, this
language also contains the following statements that model
resource consumption and taint introduction:
• Resource consumption: The statement consume(E) models

the consumption of E units of resource, where E is an
integer expression. For example, if the resource of interest
is memory, then each memory allocation can be modeled
using a consume statement in our language.

• Taint introduction: The statement source(v, label) models
the tainting of variable v with label label. where label is
eitherH (for high) or L (for low). For instance, source(v,H)
indicates that variable v is assigned to a secret value. In
practice, taint sources with label H model database queries
that retrieve security-sensitive data (e.g., password). On the
other hand, taint sources with label L represent operations
that accept some input from the user.
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Γ ` c : ⊥

Γ ` v : Γ(v)

Γ ` E1 : η1 Γ ` E2 : η2
Γ ` E1 ? E2 : η1 t η2

Fig. 2. Rules for determining taint values of expressions E

As mentioned earlier in Section III-A, our static analysis
combines two different program abstractions to effectively
detect asymptotic resource side channel vulnerabilities:
• Taint abstraction: Each variable has a taint value drawn from

the domain T = {⊥,L,H,>}, where ⊥ denotes lack of
taint, L,H represent input- and secret-taint respectively, and
> represents both input and secret taint. We impose the
partial order ⊥ v H,L v >.

• Resource abstraction: We summarize the resource usage
of each program fragment as a value drawn from the set
R = {0, 1,∞} where 0 indicates no resource usage, 1
indicates constant (but not necessarily unit) resource usage,
and∞ indicates that the resource usage cannot be statically
bounded (i.e., because it is controlled by the user). We define
a ⊕ operation on elements of set R = {0, 1,∞} as follows:

∀x ∈ R. x⊕∞ =∞
∀x ∈ R. x 6=∞⇒ x⊕ 1 = 1
∀x ∈ R. x = 0⇒ x⊕ 0 = 0

We also define a total order � on set R as ∞ � 1 � 0.
Finally, given ∆1,∆2 ∈ R, we write ∆1 � ∆2 if ∆1 =∞
and ∆1 � ∆2.
Using these program abstractions, we can describe our

analysis using rules of the form Γ ` S : Γ′,∆, χ where:
• Taint environments Γ,Γ′ map program variables to a taint

value η ∈ {⊥,L,H,>};
• ∆ ∈ {0, 1,∞} summarizes resource usage of statement S;
• χ is a boolean value indicating whether or not a vulnerability

is present in S
Hence, the meaning of the judgment Γ ` S : Γ′,∆, χ is:

“If we execute statement S in an environment that satisfies
Γ, then the resource usage of S is given by ∆ and the taint
environment after S is Γ′. Furthermore, if χ is true, then S may
contain an asymptotic resource side channel vulnerability”.

We describe our static analysis using the inference rules
shown in Figures 2, 3, and 4. First, the helper rules from
Figure 2 and Figure 3 allow us to determine the taint value η
for each expression E and predicate C under taint environment
Γ. According to the rules in Figure 2, constants are not tainted
(⊥), and the taint value for each variable v is given by Γ. For
composite expressions of the form E1 ? E2, the taint value is
given by the join of the values of E1 and E2. For instance,
if E1 has taint H and E2 has taint ⊥, then the taint value
if E1 + E2 is H t ⊥ = H. The rules for determining taint
value of predicates are similar to those for expressions and are
shown in Figure 3.

Γ ` E1 : η1 Γ ` E2 : η2
Γ ` E1 ◦ E2 : η1 t η2

Γ ` C : η

Γ ` ¬C : η

Γ ` C1 : η1 Γ ` C2 : η2 op ∈ {∧,∨}
Γ ` C1 op C2 : η1 t η2

Fig. 3. Rules for determining taint values of predicates C

Let us now consider the main analysis rules presented in
Figure 4. Here, rule (1) describes the analysis of a taint
source of the form source(v, label). In this case, the new taint
environment Γ′ is obtained from Γ by updating the taint value
of v to label.

Rule (2) describes the analysis of consume(E) statements
that model resource usage. Recall that resource usage is
defined to be ∞ if expression E can be made arbitrarily large
by an attacker. Hence, we first use the helper judgments from
Figure 2 to determine the taint value η of E. If η = L, then the
resource usage of this statement is ∞ but constant otherwise.

Rule (3) describes taint propagation for assignments of the
form v := E. As before, we use the helper rules from Figure 2
to determine the taint value η of E and update the taint
environment by assigning v to η.

Rule (4) shows how we analyze sequence statements S1;S2.
Observe that the resource usage of this statement is obtained
by adding the resource usage ∆1 of S1 and ∆2 of S2 using
the ⊕ operation defined earlier. Furthermore, S1;S2 contains
a vulnerability if either S1 or S2 has a vulnerability; hence
we take the disjunction of χ1 and χ2.

Rule (5) for conditionals is a bit more involved. Recall that
C ? S1 : S2 exhibits a side-channel vulnerability if C depends
on the secret and S1 and S2 have different resource usages.
Hence, to determine if there is a vulnerability, we first check
the taint value η of C using Figure 3. Clearly, if η 6w H, the
statement does not introduce a vulnerability; hence χ = false
under this scenario. On the other hand, if C is secret-dependent
(i.e., η w H), then an asymptotic side-channel vulnerability
arises if the resource usage ∆i is∞ in one branch but constant
or zero in the other branch. Hence, χ is true if ∆1 � ∆2 or
∆2 � ∆1, but it is false otherwise.

Continuing with rule (5), let us consider the taint values
after analyzing C ? S1 : S2 under Γ. If the taint environment
after Si is given by Γi, then the value of each variable v
after C ? S1 : S2 is given by Γ1(v) t Γ2(v). Hence, the join
operation Γ1 t Γ2 on taint environments takes the pairwise
join for each variable.

Finally, let us consider the resource usage of the statement
C ? S1 : S2, where the resource usage of each Si is given
by ∆i. Since S1 and S2 cannot execute at the same time, the
resource usage of C ? S1 : S2 is max(∆1,∆2), which is in
fact the same as ∆1 ⊕∆2.

The final rule in Figure 4 describes the analysis of loops.
First, the assumption Γ ` S : Γ,∆, χ at the second line of Rule
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(1)
Γ′ = Γ[v 7→ label]

Γ ` source(v, label) : Γ′, 0, false

(2)

Γ ` E : η ∆ =

{
∞ if η w L
1 otherwise

Γ ` consume(E) : Γ,∆, false

(3)
Γ ` E : η

Γ ` v := E : Γ[v 7→ η], 0, false

(4)
Γ ` S1 : Γ1,∆1, χ1 Γ1 ` S2 : Γ2,∆2, χ2

Γ ` S1;S2 : Γ2,∆1 ⊕∆2, χ1 ∨ χ2

(5)

Γ ` C : η Γ ` S1 : Γ1,∆1, χ1

Γ ` S2 : Γ2,∆2, χ2

χ =

{
(∆i � ∆j) if η w H

false otherwise
Γ ` (C? S1 : S2) : Γ1 t Γ2,∆1 ⊕∆2, χ1 ∨ χ2 ∨ χ

(6)

Γ ` C : η Γ ` S : Γ,∆, χ

∆′ =

 ∞ if ∆ =∞∨ (∆ � 0 ∧ η w L)
1 if ∆ = 1 ∧ η 6w L
0 otherwise

Γ ` while(C) do S : Γ,∆′, χ ∨ (η w H ∧∆′ =∞)

Fig. 4. Rules describing our static analysis

(6) states that taint environment Γ is a fixed-point, hence, the
taint environment after the loop is also Γ. Now, let us consider
the resource usage of the loop while(C) do S. Clearly, if the
resource usage of the body S is∞ (resp. 0), then the resource
usage of the loop is also∞ (resp. 0). However, if the resource
usage of S is constant (i.e., ∆ = 1), then the resource usage
of the loop depends on the taint value η of predicate C. In
particular, if η w L, then the number of loop executions can
be controlled by the attacker, causing the resource usage to be
statically unbounded. Hence, if ∆ = 1, resource usage ∆′ of
the loop is ∞ if η w L but ∆′ = 1 otherwise.

The last issue to consider in the loop rule is whether there
is a vulnerability. First, observe that the loop may have a
vulnerability if the loop continuation condition C is secret-
dependent. In particular, if C depends on a secret, the attacker
might be able to learn the secret by observing the number of
times the loop executes, which in turn can be inferred from
the program’s resource usage. To understand whether the loop
introduces a vulnerability, observe that while(C) do S can
be rewritten as C? (S; while(C) do S) : skip. Clearly, the
resource usage of the else branch is 0, and since ∆′ � ∆, the
resource usage of the then branch is precisely ∆⊕∆′ = ∆′.
Thus, the loop has a vulnerability if η w H and ∆′ =∞.

IV. DESIGN AND IMPLEMENTATION OF SCANNER

A. SCANNER Basics

SCANNER analyzes PHP applications and detects two spe-
cific kinds of vulnerabilities involving time and response-
size. Specifically, timing side channel vulnerabilities allow

Detection
module

Diagnostic
module

Exploit
generator

Leaked
database
attributes

Javascript
exploit

SCANNER

Fig. 5. Workflow of the SCANNER tool

the attacker to infer confidential data by observing server
response times. In contrast, response-size side channels enable
the attacker to glean secret information by observing the size
of the response.

The workflow of the SCANNER tool is shown in Figure 5.
Internally, the SCANNER tool consists of three different mod-
ules that perform complementary tasks:
• The detection module performs static analysis to flag po-

tential asymptotic timing and response-size side-channel
vulnerabilities. In essence, this module implements an in-
stantiation of the algorithm described from Section III for
two specific resource types.

• The error diagnostic module performs additional static anal-
ysis to report descriptive warnings. In particular, this module
identifies confidential database fields that may be leaked by
the application due to the uncovered vulnerabilities.

• The exploit generation module performs backwards sym-
bolic execution to semi-automatically generate a Javascript
program that can be used to exploit the uncovered vulnera-
bility using a cross-site search attack.
SCANNER is itself written in PHP and consists of ∼5,000

lines of code. Our implementation uses the Z3 SMT solver [18]
to solve the constraints collected during its symbolic execution
phase for semi-automated exploit generation.

B. Detection Module

SCANNER’s detection module extends the static analysis
described in Section III in two important ways: First, since
PHP programs are not annotated with source and consume
statements, we must reason about taint introduction and re-
moval as well as resource consumption at the level of PHP
statements. Second, our implementation is interprocedural and
must deal with object-oriented features of the PHP language.
Annotations. To use SCANNER, web developers need to
annotate database fields that are considered to be confidential.
In particular, rather than directly annotating the source code,
SCANNER users need to provide a separate file containing the
security-sensitive attributes of each database table.
Taint sources. Our implementation considers two kinds of
taint sources, namely, user inputs and database operations.
User inputs are taint sources with label L and correspond to
reads from pre-defined PHP arrays, such as GET, POST, and
SESSION. In contrast, taint sources with label H correspond
to database queries that retrieve private data from a database.
Given a list of confidential database attributes, SCANNER
automatically infers whether or not a given SELECT statement
is a taint source.
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Sanitization. Recall that asymptotic resource side-channel at-
tacks take advantage of the fact that the attacker can arbitrarily
inflate resource usage by providing sufficiently large inputs.
Hence, if the application sanitizes user input by bounding its
size to a small value, then the attacker can no longer inflate
resource usage. In our implementation, we consider checks
that impose an upper bound on string length to be sanitizers.
Similarly, string operations (e.g., substr) that limit the size
of the resulting string are also considered to be sanitizers.
Resource consumption. In our implementation, consume state-
ments from our formalization are instantiated in different ways
depending on the type of side-channel vulnerability. For timing
vulnerabilities, we consider every instruction to consume one
unit of resource; hence, resource usage only becomes ∞ if a
loop bound is tainted by user input. For response-size vulnera-
bilities, resource consumption corresponds to print statements.
For instance, the resource usage of a statement echo $foo is
∞ if foo is tainted by user input, but has unit cost otherwise.
Interprocedural analysis. Even though we omit function calls
from the formalization, our implementation is interprocedural
and detects vulnerabilities that arise due to interactions be-
tween different functions. Specifically, our analysis computes
function summaries of the form (Γ,Γ′,∆), where Γ is the
input taint environment, Γ′ is the output taint environment,
and ∆ represents resource usage of the procedure. The input
and output taint environments used in the summary for f only
mention memory locations that are accessible in f ; hence,
these summaries are re-usable. That is, if we analyze function
f under the same input environment Γ, we can reuse its
summary rather than re-analyzing the implementation of f .

C. Error Diagnostic Module

The static analysis described so far only allows SCANNER
to detect the existence of a possible side-channel vulnerability.
To help the user understand the severity and implications of
the uncovered vulnerability, SCANNER performs an additional
static analysis. Specifically, SCANNER’s error diagnostic mod-
ule outputs the set of confidential database attributes that may
be leaked by the application. For instance, if SCANNER’s out-
put includes Employees.Age, this means that the attacker
can infer something about the age an employee stored in the
Employees database table.

To provide such diagnostic information, SCANNER performs
a backwards static analysis that utilizes the information pro-
duced by the vulnerability detection module. Specifically, the
input to the error diagnostic module is the predicate of a
conditional branch along which there is a resource usage
imbalance. Given such a predicate C, SCANNER then collects
all secret-tainted variables used in C and performs backwards
symbolic execution to trace each variable v to the database
query that caused v to become tainted. Confidential database
attributes that are mentioned in the WHERE clause of the query
are then reported as being potentially leaked.
D. Exploit Generation Module

To further help programmers understand and assess the
detected vulnerability, SCANNER also generates a Javascript

program that can be used to launch a cross-site search attack
to exploit the vulnerability. We first provide some relevant
background on cross-site search attacks, and we then explain
how SCANNER semi-automatically generates attack scripts.

Adversary model and XS Search attacks. Recent work has
shown that cross-site search attacks can effectively exploit
side-channel vulnerabilities in web applications [21]. XS-
Search attacks require a very weak adversary model in which
the attacker runs a malicious website but does not have man-
in-the-middle or eavesdropping capabilities.

In this scenario, the attacker first tricks an unsuspecting user
into executing a malicious script, for instance, by visiting the
attacker’s website or clicking on a link in a phishing email
message. Now, the malicious script automatically submits
a cross-site request with the user’s legitimate credentials.
Since web browsers allow a script to implement handlers for
events triggered by cross-site requests, the malicious script can
perform resource usage (e.g., timing) measurements between
events and send this information back to the attacker. 4 Hence,
if the underlying website contains a side-channel vulnerability,
then the attacker can glean confidential information about the
victim by inflating certain parameters used in a database query.
Backwards symbolic execution. The goal of SCANNER’s ex-
ploit generation module is to (semi-automatically) synthesize
Javascript programs that trigger the vulnerable component
of the web application. In particular, because the vulnerable
component may only be triggered under certain values of
the URL parameters, our goal is to generate low inputs that
exercise the vulnerable functionality.

Towards this goal, SCANNER starts from the vulnerable
component C and performs backwards symbolic execution to
collect all path constraints that are necessary for the execution
to reach C. The output of the symbolic execution engine is an
SMT formula φ such that a satisfying assignment to φ yields
concrete values of the URL parameters that are sufficient to
trigger the vulnerable functionality.

We emphasize that SCANNER’s support for generating
exploits is only semi-automatic: While our analysis infers
the exact URL parameters needed to trigger the vulnerable
functionality, the high inputs are merely placeholders that must
be inflated by the user to amplify resource usage.

V. EVALUATION

We evaluate SCANNER by analyzing 10 widely-used open-
source PHP applications. These applications include Word-
Press and Joomla (content management systems), OpenClinic
(a medical records system), Gallery (a web-based photo al-
bum organizer), OpenCart, ZeusCart, and osCommerce (e-
commerce), WeBid (an online auction software), and HotCRP
and OpenConf (conference management systems). Some of
these applications contain information that is clearly security-
sensitive, such as medical records, account balances, and

4Observe that response-size side-channels can also be exploited using
timing measurements since response parsing times are dependent on the
response size.
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TABLE I
SUMMARY OF OUR EXPERIMENTAL RESULTS.

Application Lines Files Functions Number Timing Response Size False Lines of Analysis
of Code of Callsites Vulnerabilities Vulnerabilities Positives Annotations Time (min:sec)

OpenConf 24,581 133 152 4,493 0 0 0 39 1:52
OpenClinic 30,849 180 526 6,766 0 2 0 27 1:09

WeBid 48,753 336 652 8,042 1 1 0 53 4:01
HotCRP 57,799 125 2,540 18,367 0 3 1 32 3:47

Joomla 59,820 2,563 14,259 124,894 0 2 0 22 5:11
Gallery 62,699 505 1,959 16,027 0 0 0 13 8:26

osCommerce 86,663 702 195 22,273 0 0 0 53 10:13
OpenCart 156,322 1,014 3,717 53,010 1 0 0 98 27:48
ZeusCart 166,400 612 8,798 23,354 5 0 0 44 31:06

Wordpress 298,643 577 5,866 60,717 0 3 1 15 49:57
Total 992,529 6,747 38,664 337,943 7 11 2 396 143:30

TABLE II
INFORMATION INFERRED BY THE ATTACKER

Application ID Information Leaked
OpenClinic 1 Does X have a medical record?
OpenClinic 2 Has X been prescribed medication Y?

WeBid 3 Does X have product Y on their watchlist?
WeBid 4 Is X bidding on product Y?

OpenCart 5 Has X bought downloadable product Y?
ZeusCart 6 Has X bought downloadable product Y?
ZeusCart 7 Does X have an order with amount Y?
ZeusCart 8 Has X bought anything between dates X and Y?
ZeusCart 9 Does X’s order Y have processing status Z ?
ZeusCart 10 Is Y the account status for user X?
HotCRP 11 Is X an author of a submitted paper?
HotCRP 12 Is X the title of a submitted paper?
HotCRP 13 Is Z the abstract of a submitted paper?

Wordpress 14 Has X sent a private comment to the admin?
Wordpress 15 Is X the e-mail of a commentator in a post?
Wordpress 16 Is X the private comment sent to the admin?

Joomla 17 Has X authored a private article?
Joomla 18 Is X the title of a private article?

purchase histories. Some of the applications we analyzed also
provide well-documented privacy guarantees for information
that may be considered security-sensitive. For example, Word-
press explicitly states that email addresses of users will not be
disclosed.

We run our experiments on a server laptop with Ubuntu
14.04, a dual-core 2 GHz processor, 8 GB of RAM, and the
Apache 2.4.18 web server, connected to a campus wireless
network. The client is a desktop machine running Ubuntu
14.04, with a dual-core 3 GHz processor, 8 GB of RAM, and
the Firefox browser (version 44.0).

A. Overview of Results

Table I gives statistics about the analyzed programs and
summarizes the results of our evaluation. As shown in Ta-
ble I, the analyzed programs are quite large and contain
between 24K and 298K lines of code. SCANNER’s running
time on these applications is quite reasonable, with the largest
application taking 49 minutes to analyze. Most importantly,
SCANNER reports a total of 20 vulnerabilities, 18 of which
are indeed exploitable. Among the vulnerabilities uncovered

TABLE III
SUMMARY OF TIMING RESULTS FOR POSITIVE AND NEGATIVE QUERIES.

TIMES ARE IN MILLISECONDS.

ID Positive Query Negative Query
Avg Time Std Dev Avg Time Std Dev

1 1,523.71 64.85 2,020.32 137.60
2 1,655.69 29.84 2,358.24 119.24
3 96.27 10.23 513.35 22.67
4 2,593.63 113.80 1,225.34 18.47
5 265.13 16.21 29.27 4.44
6 329.26 14.68 32.61 8.85
7 4,241.29 821.32 630.82 80.96
8 4,580.50 121.90 668.72 62.65
9 4,616.64 130.10 676.79 99.84

10 3,740.37 468.63 798.55 64.92
11 1,612.79 204.89 343.49 167.43
12 1,758.41 93.46 271.01 17.87
13 2,000.76 318.38 317.93 64.06
14 839.20 56.08 502.07 43.62
15 801.15 15.35 483.67 64.28
16 796.30 37.07 467.50 30.85
17 1,172.84 243.14 486.17 27.92
18 1,090.41 135.98 488.25 47.94

by SCANNER, 7 are timing side-channel vulnerabilities, and
the rest are response-size side channels.

Table II summarizes the information that the attacker can
learn by exploiting the underlying vulnerabilities uncovered
by SCANNER. The leaked information is in the form of
yes/no queries. However, we emphasize that the underlying
vulnerabilities actually allow an attacker to infer lage parts of
a database table by using these binary conditions as an oracle.
For example, the vulnerability in OpenClinic can be exploited
to infer all medications prescribed to a user. Similarly, an
attacker can the use the vulnerability in OpenCart to learn
all e-books purchased by a user or the vulnerability in WeBid
to infer all bids of a user. Hence, these programs violate multi-
run security [9].

B. Exploiting Vulnerabilities by Measuring Response Times

We now describe how the vulnerabilities uncovered by
SCANNER can be exploited to infer the information listed in
Table II. Since we do not assume that the attacker has man-in-
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the-middle capabilities, we use cross-site search attacks 5 to
exploit these vulnerabilities (although it may also be possible
to exploit these vulnerabilities using other means). Note that
according to our adversary model, the attacker is not able
to directly measure the exact size of the server’s response.
Instead, he could perform time measurement through the
victim’s browser to indirectly infer the response size, since
longer responses generally takes more time to load. As a result,
both time and response size side channel of a web application
can be exploited by measuring server response times on the
client side.

Table III shows server response times when the answer
to the queries listed in Table II is positive and negative,
respectively. Since each of the vulnerabilities is caused by an
asymptotic imbalance in resource usage, wecan amplify the
difference between positive and negative queries by supplying
artifically inflated search queries (e.g., a query containing a
very large search string). The average and standard deviation
metrics in this table correspond to the collection of 100
samples, with URL request sizes of at most 90K characters.

As we can see from the data in Table III, the response
times vary significantly for positive and negative queries. For
instance, OpenCart has an average response time of 265 ms if
user X has bought product Y but 29 ms otherwise. Similarly,
WeBid has a response time of 2594 ms vs. 1225 ms, depending
on whether user X is bidding on product Y . Since response
times vary significantly for all the queries from Table II, it is
possible for an attacker to exploit the vulnerabilities uncovered
by SCANNER.

In the next two subsections, we describe in detail two
representative vulnerabilities uncovered by SCANNER.

C. Response-size Side-Channel in OpenClinic

Our first example is a response-size side-channel vulnera-
bility found in OpenClinic, which is an open-source medical
records system. This vulnerability reveals information about
whether a patient has a medical record in the system.

Description of vulnerability. The OpenClinic application con-
tains a medical record search page, which allows authorized
users to search for medical records matching a given query
string. The important point is that logical connectives are
allowed to be included in the query string, and if the con-
nective is set to “OR”, then the database query will return
all rows for which the patient name matches any of the
keywords in the search string. If the table does not con-
tain patients matching the query, then the application prints
No results found for X, where X is the search string
provided by the user. On the other hand, if there is a record
matching the query, then the application displays the patient’s
record, whose length is independent of the search string.
Therefore, one can learn whether the patient has a medical
record or not by simply observing whether the response size
is linear or constant with respect to the input string.

5Please see Section IV-D for background on cross-site search attacks.

Note that the attacker cannot directly see the patient’s record
since (a) he does not have access to the user’s credentials, and
(b) the same-original policy (SOP) prevents scripts contained
in the attacker’s website from directly accessing data in
OpenClinic. However, since the attacker can perform time
measurements in the victim’s browser, he can observe the
differences in time to infer the differences in response size.
Sample exploit. The attacker could inflate the query string by
appending a long suffix (e.g., “aaaaaaaa...”) after the patient
of interest using the “OR” connective. If the patient name is
in the database, the query will succeed and a short response
will be returned. Otherwise, since the query string has been
intentionally inflated by the attacker and also reflected by the
server, the attacker can tell that a negative answer to the query
will be associated with a much longer response length.
Possible fix. It is easy to fix the vulnerability in this code by
not including the search string in the response message. For
instance, the code would no longer be vulnerable if the server
always responded “No results found for user” if the queried
patient were not found. Alternatively, the code could sanitize
the search keyword by ensuring that it does not contain more
than a certain number of characters.

D. Timing Side-Channel in ZeusCart

Our second example is a timing side-channel vulnerability
that SCANNER found in the ZeusCart e-commerce system.
Description of vulnerability. At a high level, ZeusCart allows
a user with the right credentials to search order histories,
which may include information like customer name, order ID,
and the corresponding order status. If there is no matching
purchase, the user quickly gets an empty results table in
constant time. Otherwise, the application performs additional
sanitization over the input whose running time is linear in the
size of the query string. Since there is a significant difference
in response times depending on whether a user has a specific
order status, an attacker who does not have login credentials
can infer the existence of specific purchases by specific users
by performing timing measurements in the victim’s browser.
Sample exploit. Since the query string is controlled by the
user, the attacker can inflate one of the query parameters
to amplify the running time. For instance, the attacker may
append many white spaces to the user name parameter, and
in cases where there is a matching purchase, the attacker
can observe a significant increase in running time of the
application. Specifically, as shown in Table III, positive queries
take 3740ms on average, while negative queries take 799ms.
Possible fix. One possible fix for this vulnerability is to sanitize
the query string by ensuring that it does not exceed a certain
number of characters. This modification would ensure that the
response time is bounded by a constant.

E. Threats to Validity

Timing Measurement. In our evaluation, we use a specific
machine and network environment when conducting timing
measurements for positive and negative queries. Of course,
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these measurements could be substantially different if the
exploits were executed on other platforms. However, because
the resource usage imbalances detected by SCANNER are
always asymptotic, it is possible for the attacker to further
inflate the resource imbalance by providing even larger inputs.
Application Selection. Another threat to validity is that we
evaluate our technique on 10 PHP applications; hence, our
benchmarks may not be representative of many other real-
world PHP applications. Nevertheless, we believe these ap-
plications constitute a good test-bed for our approach: Many
of the projects we picked (e.g. Wordpress, Joomla) are well-
known popular web applications with thousands of stars on
Github, and their security has been widely audited by the open-
source community.

VI. POSSIBLE DEFENSES AGAINST ASYMPTOTIC
RESOURCE SIDE CHANNEL VULNERABILITIES

The most straightforward way to eliminate the class of
vulnerabilities discussed in the paper is to ensure that the
attacker cannot inflate the resource usage imbalance between
two execution paths that differ in the value of the secret. One
simple way to achieve this goal is to sanitize user input by
checking that its size cannot exceed some small, reasonable
bound. Another (perhaps more robust) fix is to eliminate the
asymptotic dependence on user input whenever possible. For
instance, in the case of vulnerabilities that concern response
size, a good rule of thumb is to make sure that the response
does not contain the entire user input.

If the vulnerability occurs in a component that requires user
or adminisrator credentials, another way to mitigate the vulner-
ability is to disallow cross-site read requests or employ anti-
CSRF mechanisms. However, it is unrealistic to completely
disallow cross-site read requests in many cases, and anti-CSRF
defenses are typically only deployed against state-changing
requests. Furthermore, even in the presence of anti-CSRF
defenses, a response-size side channel still allows an attacker
with traffic-monitoring capabilities to launch de-anonimization
attacks and perform some sensitive data inference[43].

VII. LIMITATIONS OF OUR APPROACH

SCANNER comes with a number of limitations that may
result in both false positives as well as false negatives. First,
the taint analyses described in Section III and implemented
in SCANNER only propagate explicit flows (i.e. taint is only
propagated due to assignments). Hence, our analysis can miss
some resource side-channel vulnerabilities that arise due to
implicit flows. For instance, consider the following function:

void foo(int input) {
int c = 0; if (secret) c = 1;
if(c) consume(input); else consume(1); }

This code has an asymptotic side-channel vulnerability since
the resource usage is constant in one branch but user-controlled
in the other one. However, SCANNER will not report this
vulnerability because there is no explicit flow from secret
to c. This limitation can be circumvented by tracking implicit
flows, albeit at the risk of introducing more false positives.

Second, many of the vulnerabilities uncovered by SCANNER
are exploited using XS search attacks (recall Section IV-D).
However, if the application employs anti-CSRF mechanisms
and the vulnerable component requires log-in credentials, then
the reported vulnerabilities may not be exploitable using XS
search attacks. In fact, the false positives reported in Table I
are both caused by SCANNER’s inability to reason about anti-
CSRF measures.

Third, our analysis only detects a subclass of resource side-
channel vulnerabilities where the resource usage is constant in
one execution path but dependent on the user input in another
execution path (recall Definition 3). However, it is nonetheless
possible to exploit a constant, but very large, imbalance in
resource usage. The techniques presented in this paper do not
address such vulnerabilities.

VIII. RELATED WORK

Static analysis for web security. There has been much previous
work on static analysis for web security. Most of these
techniques focus on automated detection of XSS and SQL
injection vulnerabilities [31], [45], [46], [28], [4], [44], [33].
Dahse and Holz also consider second-order XSS and SQLi
vulnerabilities and propose a static analysis for automatically
finding them [17]. In constrast to these approaches, our work
focuses on identifying privacy vulnerabilities caused by an
observable resource usage imbalance in the program.

Side channels in web applications. While side-channel leaks
have been known for decades, the first thorough study of side-
channel leaks in web applications is presented by Chen et
al [15]. Subsequent works include Chapman and Evans’ black-
box testing [14], which is a pure dynamic analysis, and Side-
buster [48], which uses a hybrid of static and dynamic analysis.
Our approach differs from them in several ways: First, while
those tools detects privacy leaks caused by an imbalance in the
number of requests exchanged between a client and the server,
it does not reason about side-channel leaks originating from
individual requests. Second, the vulnerabilities discovered by
the aforementioned tools can only be exploited by an attacker
who is able to sniff network traffic, which requires the attacker
to be in the same network path as the victim. In contrast, our
approach detects vulnerabilities that can be exploited remotely
through cross-site search attacks.

Web timing attacks. Felten and Schneider present one of the
first case studies on web timing attacks [20]. In later work,
Brumley and Boneh show how to extract private keys from
web servers running OpenSSL using timing attacks [11]. Bortz
and Boneh describe web timing attacks in which they obtain
valid usernames and items in users’ shopping carts [10].

In more recent work, Gelernter and Herzberg introduce
cross-site search attacks as a mechanism for exploiting side-
channel vulnerabilities [21]. Van Goethem et al. show how to
exploit multimedia tags in HTML5 to estimate response sizes
during web timing attacks[42]. Recently, Van Goethem et al.
have shown how a weakness in the Quota Management API in
Javascript can be used to infer response sizes at the byte level
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of granularity, allowing an attacker to de-anonimize Twitter
users and obtain medical information from WebMD[43]. In
this work, we use known attack techniques (specifically, [21],
[42]) to assess the severity of the vulnerabilities uncovered
by our approach. However, we emphasize that our work
aims to detect application-specific vulnerabilities rather than
describing a new class of web timing attacks.
Analysis for side-channel vulnerabilities.There has been sig-
nificant research effort on verifying non-interference, includ-
ing techniques based on self-composition [8], product pro-
grams [7], [41], and Cartesian Hoare Logic [40]. In contrast to
these techniques, our approach focuses on asymptotic resource
side-channel vulnerabilities and detects them using lightweight
static analysis rather than heavy-weight verification techniques
that require the inference of precise loop invariants.

Pasareanu et al. have recently proposed a symbolic exe-
cution technique for generating inputs that maximize differ-
ences in timing and memory usage between multiple program
runs [37]. Their technique does not differentiate between
constant and asymptotic differences, and their evaluation is
performed on small programs (e.g., modular exponentiation)
rather than large-scale web applications.

Another related approach is CacheAudit [19], which ana-
lyzes x86 binaries with a given cache configuration. CacheAu-
dit computes an overapproximation of the number of bits
leaked by the application on a simplified machine model. Their
primary focus is hardware-level cache adversaries, whose
capabilities do not align with those of application-level web
adversaries. For instance, it is easier for web adversaries to
exploit multi-run vulnerabilities [9], while it is harder for them
to measure nanosecond-level timing differences.
Language-based information flow. There is a large body
of work on language-based solutions for finding violations
of the non-interference principle and quantifying information
leak [3], [16], [35], [32]. However, these techniques do not
detect privacy vulnerabilities due to convert channels, such as
timing or response size.

Zhang et al. [47] propose a language-based approach for
tracking side-channel leakage. Their approach requires the
program to be written in their proposed language, whereas our
goal is to analyze existing web applications. Barthe et al. [6]
propose a type-based solution to verify the absense of side-
channels, but their technique is tailored towards cryptographic
implementations and simply rejects programs that do not
execute in constant time.
Taint analysis. A common approach for tracking informa-
tion flow in existing applications is to use taint analysis.
Hence, there is a large body of work on taint analysis for
languages like Java (e.g. FlowDroid [2]) and C++ (e.g. Flow-
Tracker [38]). While our work leverages taint information,
our main contribution is an algorithm for statically identifying
asymptotic resource side channels. Our implementation does
not leverage mature taint analysis tools like FlowDroid, as we
target web applications written in PHP.
Multi-run security. The amount of information that is leaked

due to a side channel vulnerability is often related to the
adversary’s ability to aggregate secret information across mul-
tiple executions. Köpf and Basin [30] develop an information-
theoretical model that quantifies information leakage involving
multiple adaptive interactions between the victim and the
adversary. Birgisson and Sabelfeld [9] propose an alternative
model based on knowledge sets and show how to enforce 1-
bit multirun security. Pasareanu et al. [37], [5] use symbolic
execution and model counting to compute single-run informa-
tion leakage bounds and reason about k runs o by applying
their single-run technique to the k-composition of the original
program. While our analysis does not quantify leakage, the
vulnerabilities uncovered by SCANNERin our evaluation can
be exploited to infer significant chunks of a database (see
Section V-A). We leave it to future work to develop analyses
that can quantify information leakage through asymptotic side
channels across multiple program runs.
Static analysis for resource usage. There is a significant body
of work on static analysis for determing worst-case resource
usage of programs [25], [24], [26], [12], [36], [1], [27], [13].
However, many of these analyses are quite heavyweight and
do not address privacy implications of resource usage. Since
the focus of our paper is detecting asymptotic resource side-
channels, we can effectively detect security vulnerabilities
using a lightweight program abstraction that combines taint
information with a coarse summary of resource usage.

IX. CONCLUSIONS

In this paper, we introduced asymptotic resource side chan-
nels and described a static analysis for detecting them. Our
method uses an effective, but lightweight program abstraction
that combines taint information with a summary of resource
usage. We have used our tool SCANNER to analyze 10 open-
source PHP applications and found 18 exploitable security
vulnerabilities. We believe that SCANNER can help web appli-
cation developers by automatically uncovering easy-to-exploit
vulnerabilities in their applications.
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